
Create Classes in
Python

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/documents/programming/python/

Free Textbook with lots of Practical Examples

https://www.halvorsen.blog/documents/programming/python/

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

• Create Classes
• Use Classes
• Create a Module
• Use a Module
• Inheritance

Contents

• Python IDLE
• Spyder (Anaconda distribution)
• PyCharm
• Visual Studio Code
• Visual Studio
• Jupyter Notebook
• …

Python Editors

Spyder (Anaconda distribution)

Code Editor window

Console window

Variable Explorer window

Run Program button

• Python is an object-oriented programming
(OOP) language.

• Almost everything in Python is an object, with
its properties and methods.

• The foundation for all Object-oriented
Programming (OOP) languages are Classes.

• Almost all Programming Languages today use
Object-oriented Programming techniques.

Object-oriented Programming

Create Class
class ClassName:

<statement-1>
.
.
.
<statement-N>

To create a class, use the keyword class:
class Car:

model = "Volvo"
color = "Blue"

car = Car()

print(car.model)
print(car.color)

Let's create a simple Class in Python:

Define the Class

Use the Class

The results will be in this case: Volvo
Blue

This example don't illustrate the good things with classes so we will create some more examples.

Create an Object of the Class

Classes -Example
Let's create the following
Python Code:

class Car:
model = ""
color = ""

car = Car()

car.model = "Volvo"
car.color = "Blue"

print(car.color + " " + car.model)

car.model = "Ford"
car.color = "Green"

print(car.color + " " + car.model)

Define the Class

Use the Class

We start using the
Class by creating an
Object of that Class

Set Properties

Classes -Example
Let's create the following
Python Code:

class Car:
model = ""
color = ""

car1 = Car()

car1.model = "Volvo"
car1.color = "Blue"
print(car1.color + " " + car1.model)

car2 = Car()

car2.model = "Ford"
car2.color = "Green"
print(car2.color + " " + car2.model)

Define the Class

Use the
Class

We can create and
use multiple Objects
of the same Class

The __init__() Function
In Python all classes have a built-in function called __init__(), which is always executed
when the class is being initiated.
In many other OOP languages we call this the Constructor.

class Car:
def __init__(self, model, color):
self.model = model
self.color = color

car1 = Car("Ford", "Green")
print(car1.color + " " + car1.model)

car2 = Car("Volvo", "Blue")
print(car2.color + " " + car2.model)

We will create a simple example
where we use the __init__() function
to illustrate the principle:

The self parameter is a reference
to the current instance of the class
and is used to access variables that
belongs to the class.

The __init__() Function
Defining the Class Car
class Car:

def __init__(self, model, color):
self.model = model
self.color = color

def displayCar(self):
print("Car: " + self.model + "-" + self.color)

Let’s start using the Class
car1 = Car("Tesla", "Red")
car1.displayCar()

car2 = Car("Ford", "Green")
car2.displayCar()

car3 = Car("Volvo", "Blue")
car3.displayCar()
car3.color="Black"
car3.displayCar()

Let's extend the Class by
defining a Function as
well:

The self parameter is a
reference to the current
instance of the class and
is used to access variables
that belongs to the class.

Modifying a Property

Classes - Summary
• As you see from the code, we have now defined a Class "Car"

that has 2 Class variables called "model" and "color” (these
variables are called Properties), and in addition we have defined
a Function (or Method) called "displayCar()".

• Its normal to use the term "Method" for Functions that are
defined within a Class.

• You declare class methods like normal functions with the
exception that the first argument to each method is self.

• To create instances of a class, you call the class using class name
and pass in whatever arguments its __init__() method accepts,
e.g., car1 = Car("Tesla", "Red")

Create Class in separate File
We start by creating the Class and then we save the code in "Car.py":
class Car:

def __init__(self, model, color):
self.model = model
self.color = color

def displayCar(self):
print("Car: " + self.model + "-" + self.color)

Then we create a Python Script (testCar.py)
where we are using the Class:

from Car import Car

car1 = Car("Tesla", "Red")
car1.displayCar()

car2 = Car("Ford", "Green")
car2.displayCar()

car3 = Car("Volvo", "Blue")
car3.displayCar()
car3.color="Black"
car3.displayCar()

Python Module

Inheritance

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

def displayPerson(self):
print("Person: " + self.name + ", " + str(self.age))

class Teacher(Person):
pass

class Student(Person):
pass

• Another important aspect of Object-oriented Programming is
Inheritance

• Inheritance allows us to define a class that inherits all the
methods and properties from another class.

from Person import *

teacher1 = Teacher("Knut Nilsen", 44)
teacher1.displayPerson()

student1 = Student("Per Hamsun", 20)
student1.displayPerson()

Use the pass keyword when you do not want to
add any other properties or methods to the class.

Person.py
testPerson.py

Inheritance

class Person:

class Teacher (Person): class Student (Person):

Parent Class

Child Class Child Class

Inherits from

Send the parent class as a parameter when creating the child class

Inheritance cont.
class Person:

def __init__(self, name, age):
self.name = name
self.age = age

def displayPerson(self):
print("Person: " + self.name + ", " + str(self.age))

class Student(Person):
def __init__(self, name, age, grade):

self.name = name
self.age = age
self.grade = grade

def displayPerson(self):
print("Person: " + self.name + ", " + str(self.age) + ", " + self.grade)

class Teacher(Person):
def __init__(self, name, age, course):

self.name = name
self.age = age
self.course = course

def displayPerson(self):
print("Person: " + self.name + ", " + str(self.age) + ", " + self.course)

from Person import *

teacher1 = Teacher("Knut Nilsen", 44, "Mathematics")
teacher1.displayPerson()

student1 = Student("Per Hamsun", 20, "B")
student1.displayPerson()

Person.py testPerson.py

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

